TABLE VII					900	19,290	72.58	94.02	33.1
THERMODYNAMIC FUNCTIONS FOR METHYLHYDRAZINE					1000	22,630	74.99	97.63	34.6
Temp	$H - E_0$	$-(F - E)_0/T$	S,	Cp,	1200 1500	29,830 41,420	79.32 85.28	104.18	37.1
°K.	cal./mole	mole	mole	mole	1000	41,420	00.20	112.50	09.0
298.16	3,438	55.08	66.61	17.0	listed 1	under (2) in	Table V	⁷ I were use	d with an
300	3,469	55.16	66.72	17.11	energy	difference of	1880 ca	l. mole ⁻¹ b	etween the
400	5,382	58.74	72.20	21.0	isomers	s. In some	cases th	e values ar	e given to
50 0	7,658	61.97	77.29	24.3	more s	significant fig	ures tha	n is justifie	d by their
600	10,230	64.88	81.93	27.1	absolut	te accuracy i	n order t	to retain int	ernal con-
700	13,040	67.67	86.30	29.3	sistenc	y among the o	lifferent	functions.	
800	16,080	70.23	90.33	31.3	STATE C	OLLEGE, PENN	A. REC	eived Novem	ber 24, 1950

[CONTRIBUTION FROM THE SCHOOL OF CHEMISTRY AND PHYSICS OF THE PENNSYLVANIA STATE COLLEGE]

The Heat Capacity, Heats of Fusion and Vaporization, Vapor Pressures and Entropy of Symmetrical Dimethylhydrazine¹

By J. G. Aston, G. J. JANZ AND K. E. RUSSELL

The entropy of sym-dimethylhydrazine vapor in the ideal gas state has been calculated from heat capacity measurements down to 14.5° K., heats of fusion, heats of vaporization and the vapor pressure. This has been compared with that calculated from the spectroscopic and molecular data for both the inner-outer and the outer-outer forms.

Introduction

Symmetrical dimethylhydrazine may exhibit rotational isomerism to give a number of forms analogous to the "inner" and "outer" skew forms of methylhydrazine.^{2a,b,c} This paper presents the results of a calorimetric investigation of *sym*-dimethylhydrazine, with a discussion of the relative amounts of the rotational isomers occurring in the vapor at room temperature.

Experimental

The sym-Dimethylhydrazine Sample.—Symmetrical dimethylhydrazine was prepared according to the method of "Organic Syntheses,"³ liberated by the addition of base, and purified by distillation in an atmosphere of nitrogen through a column of glass helices with approximately 100 theoretical plates.

Heat Capacity Measurements .- The measurements were taken in calorimeter F which was used for the work on methylhydrazine.² Smoothed values of the heat capacity at integral temperatures are given in Table I, extrapolated values being used from 230°K. to the melting point because of pre-melting. The heat capacity data are plotted against temperature in Fig. 1. There is a sharp rise of about 0.1 cal./mole in the heat capacity in the region of 138°K. (see insert at the left of Fig. 1). The effect constitutes 3% of the total heat capacity, compared with a precision of about 0.2% at these temperatures as indicated by the deviation plot in the upper part of Fig. 1. It can be seen from Fig. 1 that the discontinuity does not affect the smoothness of the values in Table I below 130°K. or above 150°K. but that the first differences in this region are not in keeping with the rest in the table. If the phenomenon involves a transition, then the heat of

(2) (a) West and Killingsworth, J. Chem. Phys., 6, 1 (1938);
(b) Janz and Russell, J. Chem. Phys., 17, 1352 (1949);
(c) Aston, Fizk, Janz and Russell, THIS JOURNAL, 73, 1939 (1951).

(3) "Organic Syntheses," Coll. Vol. II, John Wiley and Sons, Inc., New York, N. Y., 1943, p. 208.

TABLE I

HEAT CAPACITY OF *sym*-Dimethylhydrazine at Integral Temperatures

Mol.	wt.	60.010;	0 '	°C. =	= 273.16	°K.;	1	cal.		4.1833
	int. joules.									
Te	тр., К.	Cp cal./deg.	, /mol	le	Temp., °K.		cal.	Cp /deg	/m	ole
]	15	0.9	36		100		13.1	4		
J	16	1.0	54		110		14 .0)6		
1	17	1.1	80		120		14.9	95		
1	18	1.3	18		130		15.7	7		
1	19	1.4	55		140		16.8	33		
2	20	1.6	02		150		17.7	'9		
2	21	1.7	60		160		18.6	6		
2	22	1.9	22		170		19.5	6		
2	23	2.0	88		180		20.5	50		
2	24	2.2	58		190		21.4	19		
2	25	2.4	35		200		22.5	50		
3	30	3.4	30		210		23.5	53		
8	35	4.4	30		220		24.5	59		
4	4 0	5.3	30		230		25.7	70 ^a		
4	1 5	6.1	92		240		26.8	33 °		
Ę	50	6.9	90		25 0		28.0)1ª		
Ę	55	7.7	50		260		29.2	23ª		
6	30	8.4	65		264.28		29.7	74^a C	rys	stal
6	35	9.1	72			Fu	sion			
7	70	9.8	54		264.28		40.3	31 Li	qui	d
7	75	10.4	9		270		40.4	10		
8	30	11.0	9		280		40.5	56		
8	35	11.6	5		290		40.7	$^{\prime}2$		
ę	90	12.1	5		298.16		40.8	38		
ç	95	12.6	6							

^a Extrapolated.

transition must be close to zero. Heat capacities taken in the region of 138° K. show an abnormal afterdrift of the order of 0.001° per minute for a period of about 2 hours.

A small amount of involatile material remained in the calorimeter from the methylhydrazine measurements, which increased the heat capacity of the calorimeter by about 1% at the higher temperature,

⁽¹⁾ This research was carried out on Contract N6-onr-269, Task Order III, of the ONR.

Fig. 1.—Heat capacities of dimethylhydrazine.

for which a correction was made. The heat capacity measurements could be in error by several tenths of a per cent. and the entropy by about 0.3 e.u. on this account rather than by the instrumental errors listed in Table IV.

The Melting Point.—Equilibrium temperatures were observed with several fractions of the sample melted. The solid insoluble impurity was calculated to be 0.4 mole per cent. and the calculated melting point of the pure material is $264.24 \pm$ 0.04° K. The concentration of impurity was also estimated to be 0.4 mole per cent. from premelting heat capacities indicating the presence of little or no solid-soluble impurity. This included the involatile material mentioned above.

The Heat of Fusion.—The results of the heat of fusion measurements on sym-dimethylhydrazine are summarized in Table II. They were taken during the course of the heat capacity measurements and the usual corrections have been applied.^{2c} One of the results was obtained in conjunction with the purity determination.

TABLE II

HEAT OF FUSION OF sym-DIMETHYLHYDRAZINE Mol. wt. 60.010; 0° C. = 273.16°K.; 1 cal. = 4.1833 int. joules; melting point 264.28°K.

3					
Temp. interval. °K.	Heat input. cal./ mole	f [*] CpdT cal./ mole	Pre- melt- ing, cal./ mole	ΔH cal	fusion, ./mole
245.106-266.167*	4126.3	876.2	10.5	3260.6	
242.844-266.3875	4243.6	993.7	7.6	3257.5	
243.758-266.4095	4205.2	952.1	7.3	3260.4	
		Mea	n ∆ <i>H</i> ⇒	3295.5 =	= 5 cal./mole

^a Obtained in conjunction with purity determination. Integral heat of fusion.

Heats of Vaporization and Vapor Pressures.— Measurements were made as for methylhydrazine.² As a result of five determinations listed in Table

	TABLE	111					
MOLAL HEATS OF VAPORIZATION OF Sym-DIMETHYLHYDRA-							
	ZINE						
Mol. wt. 60.010; 0 °C. = 273.16 °K.; 1 cal. = 4.1833 int. joules							
Mole vaporized	Mean temp. of vaporization, °K.	$\begin{array}{c} \Delta H \\ \text{real gas,} \\ T, \ ^{\circ}\text{K.} \end{array}$	Δ <i>H</i> real gas 298.16°K., cal./mole				
0.093236	296.46	9441	9404				
.093136	298.97	9388	9406				
. 093329	298.60	9375	9385				
.092230	298.50	9393	9401				
.091609	297.81	9410	9402				
		Average	9400 ± 15				
Calculated from e estimated crit P = 90 atni.	equation (1), Ta ical_data, <i>T</i> c (Berthelot corre	able IV, and = 530° K., ection = 21					
cal.) 9318							

III, the heat of vaporization of sym-dimethylhydrazine was found to be 9,400 cal./mole at 25° . The vapor pressures below 25° , taken as described previously,² are given in Table IV, column 2, along

	I ABLE IV
VAPOR	PRESSURES OF sym-DIMETHYLHYDRAZINE
0 °C. =	273.16 °K.; g (State College) = 980.124
	cm./sec., ² "I.C.T."

Temperature, °K.	Vapor pressure, mm.	$P_{\text{calcd.}}^a - P_{\text{obsd.}}$
274.531	17.01	+0.33
282.892	29.19	+0.23
288.970	42.49	37
294.067	56.13	04
297.617	67.99	05
298.16 (extrapolated using eq. 1)	69 9	

^a Calculated using the equation: $\log_{10}p = -10.540 \log_{10}T - 3407.0/T + 39.352$ (1).

with the deviations (column 3) from equation (1) given at the foot of the table. These are larger than usual, possibly due to the slow adsorption processes. To give an idea of the accuracy, the heat of vaporization calculated from equation (1) is given at the foot of Table III. The accuracy of this value, of course, does not compare with the measured one. In its calculation the vapor volumes were estimated using the modified Berthelot equation and the estimated critical constants, $T_c = 530^{\circ}$ K. and $P_c = 90$ atmospheres. Equation (1) yields a value of 70.1 mm. for the vapor pressure at 298.16°K. (Table IV). This result has been used in the calculation of the entropy correction to one atmosphere.

Entropy from the Thermal Data.—The entropy calculation is summarized in Table V. A correction for gas imperfection has been made using the Berthelot equation and assumed critical constants of $T_c = 530^{\circ}$ K., $P_c = 90$ atmospheres. As with methylhydrazine, the uncertainty is less than 0.005 e.u.

Discussion

The Entropy from Spectroscopic and Molecular Structure Data.—The most probable forms of symmetrical dimethylhydrazine are the three skew forms,^{2a} with the outer-outer, the innerouter, and the inner-inner placement of methyl ENTROPY OF

TABLE V		
sym-DIMETHYLHYDRAZINE	FROM	Thermal

Data	
	B.u./mole
0-15°K. Debye function ($\theta = 118, 3^{\circ}$ of	
freedom)	0.306 ± 0.02
15°K264.28°K. graphical	30.055 ± 0.07
Fusion (3259.5/264.28)	12.334 ± 0.02
264.28-298.16°K. graphical	4.903 ± 0.01
Entropy of liquid at 298.16°K.	47.598 ± 0.12
Vaporization (9400/298.16)	31.527 ± 0.05
Entropy real gas at 298.16°K. and 69.8	
mm.	79.125 ± 0.17
Entropy ideal gas at 298.16°K. and 69.8	
mm.	79.135 ± 0.18
Compression $R \ln (69.9/760)$	-4.740 ± 0.01
Entropy ideal gas at 760 mm. and 298.16°	
K.	74.39 ± 0.2

groups. From stereo-chemical reasoning it is likely that the amount of the inner-inner form in the vapor at room temperature is very small, so that the two low energy forms are the outer-outer and the inner-outer.

The moments of inertia were calculated using the following bond distances, N–N, 1.45 Å.; C–N, 1.47 Å.; C–H, 1.09 Å.; N–H, 1.04 Å., and assuming all angles to be tetrahedral. The product of the principal moments of the outer-outer form is 1.309×10^{-114} (g. cm.²).³ The reduced moment of the methyl group is 4.524×10^{-40} g. cm.² for the outer-outer form, and the reduced moment of the methyl-amino group is 1.636×10^{-39} g. cm.². For the inner-outer form, the product of the principal moments is 1.573×10^{-114} (g. cm.²)³ and the reduced moments of the methyl and methylamino groups are 4.986×10^{-40} g. cm.² and 1.897×10^{-39} g. cm.², respectively. The moments of the methylamino group were calculated by the method of Pitzer.⁴ The symmetry number for the external rotation is unity for the inner-outer form and two for the outer-outer form.

The frequencies used in the calculation of the vibrational entropy contribution were 422, 483, 720, 801, 865, 1019, 1045 (2), 1099, 1114 (2), 1132, 1197, 1405 (2), 1456 (2), 1476 (2), 2824, 2845, 2916 (2), 2946 (2), 3223, 3294 cm.^{-1.5}

Approximate barriers of 3000 cal./mole have been assigned to the hindered rotation of both the methyl and methylamino groups. The calculations are summarized in Table VI.

TABLE VI

ENTROPY OF sym-Dimethylhydrazine from Molecular

DAIA		
	Outer-outer form	Inner-outer form
S translation	38,186	38.186
S vibration	2.850	2.850
S ext. rotation	22.692	24.253
S methyl internal rotation	4.194	4.370
S methylamino internal rotation	3.294	3.436
S mixing optical isomers	1.377	1.377
S total, e.u.	72.59	74.47
S observed, e.u.	74.39	74.39

Two alternatives are allowed by the entropy study. The entropy calculated for the inner-outer form is equal to the observed entropy within the limits of experimental error. One possibility is therefore that sym-dimethylhydrazine vapor at 25° consists almost entirely of the inner-outer form. Supporting evidence comes from dipole moment data.¹ West and Killingsworth¹ conclude that sym-dimethylhydrazine is predominantly in the inner-outer form.

The entropy study allows a second alternative. A mixture of about 70 mole per cent. outer-outer form with 30 mole per cent. inner-outer form gives an entropy equal to the observed value. This corresponds to an energy difference of about 1000 cal. between the two forms. If such a high proportion of a second form were also present in liquid symdimethylhydrazine at room temperature, it would be expected that the Raman spectrum would contain lines due to both forms. Spectra taken at two different temperatures might show variations in relative intensities of some lines, giving evidence for this second alternative.

The above discussion assumes that *sym*-dimethylhydrazine does not possess a zero-point entropy. The barriers to internal rotation are not known exactly, although the values chosen are probably not in serious error.

STATE COLLEGE, PENNA. RECEIVED NOVEMBER 24, 1950

⁽⁴⁾ Pitzer, J. Chem. Phys., 14, 239 (1946).

⁽⁵⁾ Axford, Janz and Russell, to be published.